LOUISIANA AEROSPACE CATALYST EXPERIENCES FOR STUDENTS (La ACES)

Kevin Stokes Nick Studer

September 4, 2013

OUTLINE

- ▶ FIRST HALF (*Kevin Stokes*)
 - What is La ACES?
 - How does it work at UNO?
- SECOND HALF (Nick Studer)
 - La ACES Student Project 2012–2013

INTRODUCTION

- LaACES Scientific ballooning program for undergraduates
- Funded by Louisiana's NASA Space Grant Consortium (LA SPACE)
- Students design, build, test and fly an experiment of their choice on a high-altitude weather balloon.
- Project spans two semesters.
- Includes undergraduates across all STEM fields of study.

HIGH ALTITUDE BALLOON-BASED MEASUREMENTS

NASA (and others) have used high-altitude sounding balloons for decades

- Weather and atmosphere-related measurements Identification and monitoring of CFC and chlorine monoxide radicals in the stratosphere, CO₂, O₃
- Astrophysical observations Early maps of anisotropies in the Cosmic Microwave Background, first identification of antiprotons in cosmic rays, detection of γ rays from supernova 1987A, blackhole x-ray transients.
- Test and certify space-flight hardware Compton Gamma Ray Observatory (CGRO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Cosmic Ray, Isotope Spectrometer on the Advanced Composition Explorer (ACE), Wilkinson Microwave Anisotropy Probe (WMAP)

LaACES OBJECTIVES

The primary objective is to give students the opportunity to engage in a practical scientific investigation involving design, construction, project management, testing, calibration, data analysis, documentation and presentation of results.

STUDENT LEARNING OUTCOMES

- Understand the procedures for designing a scientific experiment.
- Analyze data with appropriate treatment of errors and uncertainties, and form conclusions based on the data and analysis.
- Develop a project management plan and adhere to deadlines.
- Use the tools and techniques of electronics with a basic level of proficiency.
- Locate and use scientific and technical information.
- Document research and development and write technical reports.

IMPLEMENTATION

La ACES is a two-semester program:

- First semester
 - Instruction lecture/activities (Experiment design, scheduling, project management, electronics, programming, sensors, atmospheric science, heat transfer, etc...)
- Second semester
 - Design
 - Build
 - Test
 - Fly

STUDENTS

- Open to any STEM major
- ▶ Team size 3-5 students (limited by funding)

PROJECTS

- Science driven
- Student led

PROJECT EXAMPLES

EXPERIMENTS TO MEASURE

- Pressure, temperature, and relative humidity
- Earth's magnetic field
- Ozone as a function of altitude
- Speed of sound
- Electrical conductivity of the atmosphere
- Electric field

- NOx gases
- Cosmic ray intensity
- Efficiency of thin film and flat panel solar cells
- UV radiation
- Acceleration due to gravity
- Neutron flux

BALLOON PROJECT

- Project run like a NASA project
- Plans, milestones, deliverables, etc...
- A lot of NASA-like documentation
 - Preliminary Design Review (PDR)
 - Critical Design Review (CDR)
 - Flight Readiness Report (FRR)
 - Flight Readiness Presentation
 - Science Presentation

RELATED PROGRAMS

- HASP High Altitude Student Platform
- HASP includes a standard mechanical, power and communication interface for the student payload, based upon a flight tested design.
- 36 kilometers with flight durations of 15 to 20 hours
- Competitive: student teams write a proposal

